

Chiral 5-Methyl-trihydroxypyrrolidines—Preparation from 1,2-Oxazines and Glycosidase Inhibitory Properties

Thierry Sifferlen,^a Albert Defoin,^{a,*} Jacques Streith,^a Didier Le Nouën,^a Céline Tarnus,^a Isabelle Dosbaâ^b and Marie-José Foglietti^b

^aÉcole Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace, 3, rue A. Werner, 68093 Mulhouse Cédex, France b *Laboratoire de Biochimie et de Glycobiologie, Universite´ Rene´ Descartes, 4, Av. de l'Observatoire, 75006 Paris, France*

Received 13 September 1999; accepted 14 December 1999

Abstract—Chemical transformations of chiral 1,2-oxazines **4**, **5** gave the 2,5,6-trideoxy-2,5-imino d-alditols **12b**, **13b** in the d-altritol and D-talitol series, respectively. Basic aldehyde epimerisation led to the D-allitol isomer **15b**. Compound **12b** is a potent α -L-fucosidase and α -D-galactosidase inhibitor. \oslash 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Polyhydroxypiperidine and polyhydroxypyrrolidine aminosugars are monosaccharide analogues which mimic these sugars in their pyranose or furanose forms so that they are generally potent inhibitors of the corresponding glycosidases.¹ Among these amino-sugars, type **1a**–**c** 5-methyl-polyhydroxypyrrolidines, which are also called ω -deoxy-aza-sugars, have been recently synthesised and studied as glycosidase inhibitors. l-Arabinose derivatives of type **1b**,**c** are potent α -L-rhamnosidase inhibitors;² the (\pm)-ribose analogues were synthesised, but not tested.³ Some 5-methyl-pyrrolidine-triols **1a** were obtained by chemio-enzymatic synthesis by Wong et al.^{4–6} and proved to be α -L-fucosidase inhibitors,^{4,5} and also rather weak α -[1,3]-fucosyl-transferase inhibitors.⁷ The all-*trans* isomer is a natural product isolated from the seeds of a tree of the *Leguminoseae*

family (*Sophoreae* tribu) and is a weak β -D-mannosidase inhibitor.⁸

We have already described the de novo chiral synthesis of 6-deoxy-nojirimycin and of some of its isomers from sorbaldehyde dimethylacetal **2** via asymmetric hetero-Diels– Alder cycloaddition with the α -chloronitroso-D-mannose derivative **3** and with excellent asymmetric induction $(ee\geq99\%)$; chemical modifications of the primary Diels– Alder adduct gave the intermediate oxazane-diols **4** and **5** (Scheme 1). 9 Starting from these two diols, we describe herein the synthesis of three 5-methyl-trihydroxypyrrolidines of type **1a**, as well as their glycosidase inhibitory properties. The principle of this synthesis is a ring reduction of 1,2-oxazane in pyrrolidine and a basecatalysed epimerisation of the aldehyde group. A preliminary communication relating to this work has already been published.¹⁰

Scheme 1.

Keywords: trihydroxypyrrolidines; glycosidases inhibitions.

^{*} Corresponding author. Fax: $+33-03-89-33-68-15$; e-mail: a.defoin@univ-mulhouse.fr

Synthesis of Pyrrolidine Ring

Modifications of the oxazane ring required protection of the diol moieties in **4**, **5** as acetonides **6**, **7**, respectively, which was achieved according to Ref. 11 in dimethoxy-propane with Amberlyst-15 (H^+) as catalyst. Hydrogenolysis of the N–O bond over Pd/C as described earlier for the diols **4**, **5**⁹ led to the linear protected 5-amino-5,6-dideoxy-D-hexoses 8a, 9a, in the D-allose and D-fucose series, respectively, which were *N*-reprotected at once with benzyl chloroformiate in aqueous 1N NaOH to give **8b**, **9b** in 67–80% overall yields from the diols **4**, **5** after chromatographic purification. Esterification of the remaining alcohol function with methane sulfonyl chloride and $NEt₃$ gave quantitatively the mesylates **8c**, **9c** which were easily cyclised to the protected 2,5-*trans* pyrrolidines **10a**, **11a**, respectively, with aq. 2.5 N NaOH in EtOH at 80° C in 70–75% yield after chromatography (Scheme 2).

Selective acidic deprotection of the acetal moiety was carried out in dry acetone with Amberlyst-15 $(H⁺)$, according to Coppola's method¹² at 40° C and led easily to aldehyde **10b** from **10a**, but its isomer **11b** from **11a** was more difficult to obtain.

Crude aldehydes $10b$, $11b$ were reduced by NaBH₄ in MeOH into the corresponding alcohols **10c**, **11c** in 67 and 78% yield from acetals **10a**, **11a**, respectively. Deprotection of these alcohols by Amberlyst-15 (H^+) in MeOH into 12a, **13a**, then by hydrogenolysis over Pd/C, led to the final trihydroxypyrrolidines, i.e. to the crystalline **12b** (2,5,6trideoxy-2,5-imino-p-altritol) and the oily 13b (2,5,6trideoxy-2,5-imino-p-talitol) in $80-85%$ yields from the corresponding alcohols **10c**, **11c**. In these syntheses, intermediary compounds are generally not purified and only characterised by ¹H NMR.

The enantiomer of the talitol derivative **13b** was assumed by Wong to have been obtained by chemio-enzymatic synthesis, 4 nevertheless its physical properties are quite different from those of **13b** as obtained by us and correspond presumably to another isomer¹³ (see Structural Analysis).

Aldehyde Epimerisation

Isomeric aldehydes **10b**, **11b** appear to be stable compounds under normal conditions, nevertheless they cannot be chromatographed without some degradations. They present in their ¹ H NMR spectra two sets of distinct resonances for two rotamers at 300 K; the origin of this unusual highly hindered internal rotation of the carbamate $N-CO₂Bn$ moiety¹⁴ is probably a steric bulkiness between this group and the two neighbouring substituents, the CHO(1) and the Me(6) groups. This bulkiness is particulary severe for **10b** because of the proximity of the acetonide ring, so that, even at 330 K, the 1 H NMR spectrum was not resolved.

The supposed instability of some similar pyrrolidine-2 carbaldehydes, which is reported in the literature,¹⁵ was usually explained as a spontaneous epimerisation and is probably attributed to such a rotamery.

Scheme 2. (a) Dimethoxypropane/Amberlyst 15 (H⁺). (b) H₂/Pd–C. (c) ClCO₂Bn/NaOH. (d)ClSO₂Me/NEt₃. (e) 1 N NaOH/MeOH. (f) Amberlyst 15 (H⁺)/ acetone. (g) NaBH₄/MeOH. (h) Amberlyst 15 (H⁺)/EtOH. (i)CO₃Na₂/MeOH. (j) H⁺/MeOH.

	α -D-Glucosidase	β-D-Glucosidase	α -D-Mannosidase	α -L-Fucosidase	α -D-Galactosidase
12 _b	n.i.	1.2 mM	(53 µM)	(9 μM)	$(5 \mu M)$
13 _b	n.i.	$(100 \mu M)$	n.i. ^a	l mM	2 mM
15 _b	n.i.	n.i.	n.i.	$(120 \mu M)$	$(70 \mu M)$
16^{18}	n ₁	$350 \mu M$	$14 \mu M$	$n1$.	$0.2 \mu M$

Table 1. Glycosidases inhibition values as IC₅₀ or (K_i) for pyrrolidines 12b, 13b, 15b [α -D-glucosidase from yeast, β -D-glucosidases from almond, α -Dmannosidase from Jack bean, α -L-fucosidase from bovine kidney, α -D-galactosidase from green coffee beans; n.i.: no or weak (IC₅₀>1 mM) inhibition]

 a Activation (+78% at 1 mM).

Epimerisation of the carbaldehyde group of **10b** was possible indeed, but it required basic conditions; in this case $Na₂CO₃$ in MeOH was a strong enough base to trigger complete epimerisation into the thermodynamically more stable $2,5\text{-}cis$ isomer **14a** after 1 h at rt.¹⁶ Attemps to epimerise its isomer **11b** failed using the same experimental conditions; more drastic conditions led to degradation. In this latter case, the formation of the all-*cis* isomer is obviously not favoured.

Immediate reduction of $14a$ by addition of NaBH₄ to the isomerisation solution gave directly the corresponding alcohol **14b** in 54% yield from **10b**. Deprotection in **15a** with Amberlyst 15 $(H⁺)$ followed by hydrogenolysis over Pd/C, led to trihydroxypyrrolidine (2,5,6-trideoxy-2,5 imino-p-allitol) **15b** in 87% yield.

Structural Analysis of the Pyrrolidines

1 H NMR data of the synthesised pyrrolidines **10a**–**c**, **11a**–**c**, **14a**,**b**, **12a**,**b**, **13a**,**b**, **15a**,**b** were carefully determined because of strong rotation hindrances for the *N*-acyl derivatives and are presented in Table 2 (see Experimental). The structures of these products could be ascertained unambiguously by the chemical transformations which were carried out starting from the oxazane-diols **4**, **5**. Nevertheless, in the *N*-acylated pyrrolidines, steric interaction between the *N*-acyl group and the substituents in 2- and 5-positions forces the pyrrolidine ring to adopt a conformation in which the dihedral angles of both *trans* vicinal $H-C(2)$, $H-C(3)$ and/or $H-C(4)$, $H-C(5)$ protons are close to 90° , so that the corresponding couplings are small or null (0–2.5 Hz). This is clearly observed for the *trans* vicinal couplings $J(2,3)$ in **11a–c**, **13a**; for $J(2,3)$ and *J*(4,5) in **14a**,**b** and for *J*(4,5) in **10a**–**c**, **12a**.

Similar results have been observed for methyl furanosides in which the anomeric effect favours a quasi-axial position for the anomeric substituent so that *trans J*(1,2) values are small $(0-1.5 \text{ Hz})$.¹⁷

As a consequence, the suppression of this steric bulkiness by *N*-deprotection led to a conformational change for the final pyrrolidines **12b**, **13b**, **15b** and the above *trans*-couplings are larger (5–9 Hz, see Table 2).

If we consider, in particular, the case of **13b**, its stereostructure results from one of its *N*-acylated derivatives **11c, 13a** and the relative position of the $CH_2OH(1)$ group on the same side as $H-C(3)$, $H-C(4)$ and $H-C(5)$ was ascertained with the derivative **13a** by nOe experiments: irradiation of $CH₂(1)$ signals gave an enhancement of 8 and 6% of the ones of HC(3) and H-C(4), respectively; irradiation of H-C (5) signal gave an enhancement of 6% of the one of H-C(4).

Inhibitions of Glycosidases

The inhibition properties of pyrrolidine-triols **12b**, **13b**, **15b** on various glycosidases are reported in Table 1. Inhibition constants (K_i) determined for the most potent derivatives indicate a competitive inhibition. It is noteworthy that α -L-fucosidase and α -D-galactosidase show similar inhibition profiles with the three evaluated compounds. It underlines the importance of the *cis*-2,3-diol group in these pyrrolidines similar to the structure of the parent sugars, α -L-fucose and α -D-galactose. In addition, the presence of the CH₂OH functionality improves the affinity when the same orientation as the *cis*-diol group is considered, d-altritol **12b** being ca. 10 times more potent on both enzymes than p-allitol 15b. The activity of the other studied glucosidases is not significantly inhibited by these compounds, except **13b** on β -D-glucosidase ($K_i = 100 \mu M$) and **12b** on α -D-mannosidase ($K_i = 53 \mu M$).

Comparison of our results for **12b** with literature data related to compound 16^{18} (Table 1) shows that the presence of the methyl-(6) substituent is essential for the recognition by α -L-fucosidase. An orientation of this methyl group identical to l-fucose should increase the affinity to the enzyme.

Conclusion

We have presented a simple synthesis as well as the glycosidase inhibitor properties of three pyrrolidine-triols, starting from the known oxazane-diols **4** and **5**, with overall yields of 31% for **12b** and 27% for **15b** from diol **4**, and of 33% for **13b** from diol **5**.

Experimental

General

Flash chromatography (FC): silica gel (Merck 60, 230–400 mesh). TLC: Al-roll silica gel (Merck 60, F_{254}). Mp: Kofler hot bench or Büchi-SMP20 apparatus, corrected. IR spectra $(\nu \text{ in cm}^{-1})$: Perkin–Elmer 157 G, $[\alpha]_{D}$: Schmidt-Haensch Polartronic Universal polarimeter. HPLC measurements:

liquid chromatograph Hewlett-Packard 190. ¹H and ¹³C NMR (62.9 MHz) spectra: Bruker AC-F250; tetramethylsilane (TMS) in CDCl₃, CD₃OD (δ (CD₃OD)=3.30), (D₆)-DMSO $(\delta((D_6)-DMSO)=2.50)$ or natrium (D_4) -trimethylsilyl-propionate (D_4 -TSP) in D_2O (¹H-NMR) and CDCl₃, CD₃OD, or (in D₂O) CH₃OH or dioxane $\lceil \delta$ (CDCl₃)=77.0, δ (CD₃OD)=49.0, in D₂O δ (CH₃OH)=50.0, δ (dioxane)= 67.4 with respect to TMS] $(^{13}C\text{-NMR})$ as internal references; δ in ppm and *J* in Hz. ¹³C attributions were ascertained by ${}^{1}H-{}^{13}C$ correlation. NOe experiments were carried out in argon saturated solutions. High resolution (HR)-MS were measured on a MAT-311 spectrometer at the University of Rennes. Microanalyses were carried out by the Service Central de Microanalyses du CNRS, F-69390 Vernaison, or Service de Microanalyse de l'ICSN-CNRS, F-91168 Gif sur Yvette.

Reagents and solvents: 5% Pd/C catalyst, benzyl chloroformate, 2,2-dimethoxypropane, MeSO₂Cl were purchased from Fluka, Amberlyst-15 from Rohm & Haas, triethylamine was distilled. Usual solvents were freshly distilled, dry EtOH and MeOH distilled over Mg/MgI_2 , CH₂Cl₂ was kept over Na_2CO_3 .

1,2-Oxazane derivatives

Benzyl (3*R***)-***t***-4,***t***-5-isopropylidenedioxy-***c***-6-dimethoxymethyl-***r***-3-methyl-1,2-oxazane-2-carboxylate (6).** To a solution of diol 4^9 (2.21 g, 6.48 mmol) in 2,2-dimethoxypropane (8 ml) was added Amberlyst-15 (H^+) (0.13 g) and the solution was stirred at 40° C for 2 h. The catalyst was discarded by filtration, washed with acetone and the solvents were evaporated to give **6** as a brownish oil (2.6 g, quant.). For analytical purposes, it was purified by FC (AcOEt/cyclohexane, 1:1).

6: yellowish oil, $[\alpha]_D^{20} = -99$ ($c=1.0$, CHCl₃). IR (CHCl₃): 2985, 2925, 1705, 1450, 1405, 1385, 1355, 1330, 1305, 1290, 1230, 1130, 1070, 900, 865, 695. ¹H NMR (CDCl₃, 298 K): 7.36 (m, 5H arom.); 5.15, 5.27 (2d, J=12.3 Hz, CH₂Ph); 4.64 (dq, H-C(3)); 4.43 (d, H-C(1')); 4.35 (dd, H-C(5)); 4.05 (dd, H-C(4)); 3.97 (dd, H-C(6)); 3.42, 3.44 (2s, 2 OMe); 1.36 (d, Me-C(3)); 1.33, 1.36 (2s, 2 Me). *J*(3,4)=1.2 Hz, *J*(3,Me-3)=7.2 Hz, *J*(4,5)=5.2 Hz, *J*(5,6)= 8.8 Hz, *J*(6,1')=3.4 Hz. ¹³C NMR (CDCl₃, 300 K): 155.5 (NCO₂); 136.0, 128.4, 128.2, 128.2 (Ph); 109.7 (CMe₂)); 102.3 (C(1')); 79.3 (C(6)); 74.7 (C(4)); 68.9 (C(5)); 67.7 (*C*H2Ph); 54.8, 54.5 (2 OMe); 51.5 (C(3)); 28.0, 26.3 (2 Me); 16.0 (Me-C(3)). $R_f=0.36$ (AcOEt/cyclohexane 1:1). Anal. calcd for $C_{19}H_{27}NO_7$ (381.42): C 59.83, H 7.14, N 3.67; found: C 59.5, H 7.1, N 3.7.

Benzyl (3*R***)-***c***-4,***c***-5-isopropylidenedioxy-***c***-6-dimethoxymethyl-***r***-3-methyl-1,2-oxazane-2-carboxylate (7).** Same procedure as for **6** from diol 5^9 (2.65 g, 7.75 mmol) in 2,2-dimethoxypropane (10 ml) with Amberlyst-15 (H^+) (0.16 g) at 45° C for 5 h to give pure 7 after washing with cold *i*-Pr2O (1.975 g, 67%).

7: beige crystals. $Mp=107-108^{\circ}C$ (*i*-Pr₂O/cyclohexane). $[\alpha]_D^{21} = -40$ (*c*=1.0, CHCl₃). IR (KBr): 2980, 2930, 1695, 1410, 1375, 1350, 1300, 1245, 1210, 1135, 1100, 1070, 1045, 1025, 1010, 965, 875, 750, 700. ¹H NMR (CDCl₃,

300 K): 7.36 (m, 5 H arom.); 5.24, 5.13 (2d, J=12.2 Hz, C*H*₂Ph); 4.69 (d, *J*=8.0 Hz, H-C(1')); 4.38 (m, H-C(3), H-C(4)); 4.24 (m, H-C(5)); 4.11 (dd, $J=3.0$ Hz, 8.0 Hz, H-C(6)); 3.44, 3.34 (2s, 2 OMe); 1.53,1.35 (2s, 2 Me); 1.30 (m, Me HzC(3)). ¹H NMR (C₆D₆, 300 K): 7.27 (m, 2 H arom.); 7.08 (m, 3 H arom.); 5.13, 5.05 (2d, *J*=12.4 Hz, CH₂Ph); 4.87 (d, H-C(1')); 4.42 (quint., H-C(3)); 3.93 (dd, H-C(4)); 4.01 (dd, H-C(5)); 4.11 (dd, H-C(6)); 3.22, 3.40 (2s, 2 OMe); 1.39 (d, Me-C(3)); 1.39, 1.15 (2s, 2 Me). *J*(1',6)=8.0 Hz, *J*(3,4)=7.3 Hz, *J*(3,Me-3)=6.9 Hz, *J*(4,5)= 6.1 Hz, $J(5,6)=2.8$ Hz. ¹³C NMR (CDCl₃, 300 K): 154.8 (NCO₂); 135.7, 128.5, 128.3, 128.2 (Ph); 109.6 (CMe₂)); 99.9 (C(1')); 78.3 (C(6)); 71.2 (C(5)); 70.7 (CH₂Ph); 67.8 (C(4)); 56.0 (OMe); 51.5 (C(3)); 50.9 (OMe); 25.6, 25.5 (2 Me); 14.6 (Me HzC(3)). R_f =0.48 (AcOEt/cyclohexane 1:1). Anal. calcd for $C_{19}H_{27}NO_7$ (381.42): C 59.83, H 7.14, N 3.67; found: C 59.9, H 7.1, N 3.7.

Pyrrolidine derivatives

5-Amino-3,4-*O***-isopropylidene-5,6-dideoxy-**d**-allose dimethylacetal (8a) and 5-(benzyloxy-carbonylamino)- 3,4-***O***-isopropylidene-5,6-dideoxy-D-allose dimethylacetal (8b).** A solution of crude **6** (2.07 g corresponding to 5.06 mmol) in EtOH (8 ml) was hydrogenolysed over 5% Pd/C (0.1 g) at 50°C for 1 day (after 8 h, another 0.1 g Pd/C was added). The catalyst was discarded by centrifugation, washed with EtOH and the solvents were evaporated to give crude **8a** (1.4 g, quant.).

To a stirred solution of crude **8a** (1.4 g, 5.06 mmol) in distilled water (10 ml) was added aq. 2.5 N NaOH (6 ml, 15 mmol) and ClCO₂Bn $(1.1 \text{ ml}, 7.6 \text{ mmol}, 1.5 \text{ equiv.})$. After 3 h at rt, the solution was extracted with CH_2Cl_2 $(5\times5$ ml), the organic phases were dried $(MgSO₄)$ and evaporated. The resulting yellow oil (2.3 g) was purified by FC (AcOEt/cyclohexane, 1:1 on 100 g silica gel) and gave pure **8b** (1.55 g, 80% yield from **4**).

8a: yellowish oil characterised by ¹H NMR (CDCl₃, 300 K): 4.51 (d, H-C(1)); 4.25 (dd, H-C(3)); 3.86 (dd, H-C(2)); 3.80 $(dd, H-C(4))$; 3.55, 3.50 (2 s, 2 OMe); 3.15 (dq, H-C(5)); 2.62 (broad s, OH, NH₂); 1.40, 1.34 (2 s, 2 Me); 1.26 (d, Me(6)). $J(1,2)=1.8$ Hz, $J(2,3)=9.6$ Hz, $J(3,4)=5.4$ Hz, $J(4,5)=9.4$ Hz, $J(5,Me(6))=6.4$ Hz.

8b: yellow oil. $[\alpha]_D^{20} = -4$ ($c=1.0$, CHCl₃). IR (CHCl₃): 3560, 3435, 2990, 2935, 2840, 1710, 1510, 1450, 1380, 1370, 1230, 1070, 910, 870, 695. ¹H NMR (CDCl₃, 298 K): 7.32 (m, 5 H arom.); 5.08, 5.10 (2d, J=12.4 Hz, $CH₂Ph$); 5.39 (d, NH-C(5)); 4.47 (d, H-C(1)); 3.80 (ddd, H-C(2)); 4.08 (dd, H-C(3)); 4.16 (dd, H-C(4)); 4.05 (ddq, H-C(5)); 3.54, 3.44 (2s, 2 OMe); 2.54 (d, OH-C(2)); 1.42, 1.34 (2s, 2 Me); 1.30 (d, Me(6)). $J(1,2)=1.8$ Hz,
 $J(2,OH-2)=4.8$ Hz, $J(2,3)=9.6$ Hz, $J(3,4)=5.4$ Hz, *J*(2,0H-2)=4.8 Hz, $J(4,5) = 6.0$ Hz, $J(5,$ Me(6))=6.6 Hz, $J(5,$ NH-5)=8.0 Hz. $R_f=0.28$ (AcOEt/cyclohexane 1:1). Anal. calcd for $C_{19}H_{29}NO_7$ (383.44): C 59.51, H 7.62, N 3.65; found: C 59.3, H 7.7, N 3.6.

5-(Benzyloxycarbonylamino)-3,4-*O***-isopropylidene-2-***O*methanesulfonyl-5,6-dideoxy-**D-allose** dimethylacetal **(8c) and 2,5-(benzyloxycarbonylimino)-3,4-***O***-isopropyl-**

^a Benzyl protons, *J*=12.3 Hz, Ph: 7.30–7.38.
^b Acetonide methyls.

^c Acetal OMe: 3.47, 3.48.

^d Two rotamers.

e 330 K, OH–C(1): 4.6 (br. s).

f In D₂O.

 g Acetal OMe: 3.30, 3.38.

 $^{\rm h}$ 336 K.

 $\mathrm{^i}$ 333 K.

^j OH–C(1): 2.3 (br. s), $J(1a, OH-1)=J(1b, OH-1)=4.8$ Hz.

^k 3 OH: ca. 2.8, 2.83, 2.65 (3 br. s); $J(1a, OH-1)=J(1b, OH-1)=6.2$ Hz. ¹ In (D_o)-DMSO, 350 K, 3 OH: ca. 4.45 (br. s).

^m In CD₃OD.
ⁿ OH–C(1): 2.2 (br. s), *J*(1a,OH-1)=4.8 Hz, *J*(1b,OH-1)=6.2 Hz.
^o 400 MHz, 3 OH: 2.32 (d, *J*=3.6 Hz), 2.37 (d, *J*=5.7 Hz), 2.84 (s).

idene-2,5,6-trideoxy-**p-altrose dimethylacetal** (benzyl **(2***S***)-***c***-3,***c***-4-isopropylidenedioxy-***r***-2-dimethoxymethyl***t***-5-methyl-pyrrolidine-1-carboxylate, 10a).** To a stirred solution of **8b** (1.56 g, 4.08 mmol) and NEt₃ (0.7 ml, 5.1 mmol, 1.25 equiv.) in CH_2Cl_2 (9 ml), was added at -10° C MeSO₂Cl (0.35 ml, 4.5 mmol, 1.1 equiv.). After 1 h at -10° C, Et₂O (20 ml) was added, the organic phase was washed with water $(3\times10 \text{ ml})$, the aqueous phases were extracted with $Et₂O$ (3×10 ml), the organic phases dried (MgSO4) and evaporated to give **8c** (1.88 g, quant.).

A solution of **8c** (1.82 g, 3.95 mmol) in EtOH (2.5 ml) and aq. 2.5N NaOH (4.75 ml, 11.8 mmol, 3 equiv.) was stirred at 80° C for 1.5 day. H₂O (15 ml) was added and the solution was extracted with AcOEt (3×10 ml), the organic phases were dried $(MgSO₄)$ and evaporated. Crude **10a** (1.2 g) was purified by FC $(CH_2Cl_2/Et_2O 9:1$ on 60 g silica gel) to give pure **10a** (1.03 g, 72% yield from **8b**).

8c: yellow oil, characterised by ¹H NMR (CDCl₃, 298 K): 7.33 (m, 5 H arom.); 5.34 (d, NH-C(5)); 5.07 (s, CH₂Ph); 4.92 (dd, H-C(2)); 4.58 (d, H-C(1)); 4.41 (dd, H-C(3)); 4.35 (dd, H-C(4)); 3.81 (sext., H-C(5)); 3.52, 3.47 (2 s, 2 OMe); 3.20 (s, SO2*Me*); 1.45, 1.36 (2s, 2 Me); 1.34 (d, Me(6)). $J(1,2)=2.6$ Hz, $J(2,3)=6.8$ Hz, $J(3,4)=5.7$ Hz, $J(4,5)=$ 7.0 Hz, $J(5,\text{NH-5})=7.8$ Hz, $J(5,\text{Me}(6))=6.8$ Hz. $R_f=0.39$ (AcOEt/cyclohexane 1:1).

10a: yellow oil, $[\alpha]_D^{20} = -46$ (*c*=1.0, CHCl₃). IR (CHCl₃): 2980, 2930, 1700, 1450, 1410, 1380, 1350, 1290, 1235, 1185, 1120 1065, 965, 865, 690. ¹ H NMR: see Table 2. ¹³C NMR (CDCl₃, 300 K): 155.2 (NCO₂); 136.6, 128.4, 128.0, 127.9 (Ph); 112.2 (CMe₂)); 103.9 (C(1)); 84.3 $(C(4))$; 79.0 $(C(3))$; 66.8 (CH_2Ph) ; 62.2 $(C(2))$; 59.8 (C(5)); 57.1, 56.2 (2 OMe); 26.1, 24.7 (2 Me); 17.1 (Me(6)). $R_f=0.37$ (CH₂Cl₂/Et₂O 9:1). Anal. calcd for $C_{19}H_{27}NO_6$ (365.42): C 62.45, H 7.45, N 3.83; found: C 61.9, H 7.5, N 3.8.

5-Amino-3,4-*O***-isopropylidene-5,6-dideoxy-**d**-fucose dimethylacetal (9a), 5-(benzyloxy-carbonylamino)-3,4-** *O***-isopropylidene-5,6-dideoxy-D-fucose dimethylacetal (9b), 5-(benzyloxycarbonylamino)-3,4-***O***-isopropylidene-2-***O***methanesulfonyl-5,6-dideoxy-**d**-fucose dimethylacetal (9c) and 2,5-(benzyloxycarbonylimino)-3,4-***O***-isopropyl**idene-2,5,6-trideoxy-**D-talose dimethylacetal (benzyl (2***S***)-***t***-3,***t***-4-isopropylidenedioxy-***r***-2-dimethoxymethyl-***t***-5-methyl-pyrrolidine-1-carboxylate, (11a)).** Same procedure as for **8a** from **7** (1.675 g, 4.39 mmol) in EtOH (17 ml) over 5% Pd/C (88 mg) at 50 \degree C for 14 h to give crude **9a** (1.3 g, quant.) which was *N*-protected as for **8b** in H₂O (8 ml), $2.5 N$ NaOH (5.3 ml), with ClCO₂Bn (0.93 ml, 6.59 mmol, 1.5 equiv.) for 4.5 h at rt. Purification by FC (AcOEt/cyclohexane 1:1) gave pure **9b** (1.68 g, quant.).

Same procedure as for **8c** with **9b** (1.68 g, 4.39 mmol) in CH_2Cl_2 (10 ml), NEt₃ (0.92 ml, 6.6 ml, 1.5 equiv.) with ClSO₂Me $(0.375 \text{ ml}, 4.8 \text{ mmol}, 1.1 \text{ equiv})$ to give **9c** (2.1 g, quant.). **9c** was cyclised with the same procedure as for **10a** in EtOH (9 ml) with 2.5 N NaOH (5.3 ml) at 808C for 14 h to give **11a** (1.17 g, 73% from **7**) after FC (AcOEt/cyclohexane 3:7 on 60 g silica gel).

9a: yellowish oil characterised by ${}^{1}H$ NMR (CDCl₃, 300 K): 4.42 (d, H-C(1)); 3.70 (dd, H-C(2)); 4.38 (dd, H-C(3)); 4.11 $(dd, H-C(4))$; 3.29 $(dq, H-C(5))$; 4.04 (br. s, OH, NH₂); 3.49, 3.46 (2s, 2 OMe); 1.55, 1.37 (2s, 2 Me); 1.35 (d, Me(6)). $J(1,2)=7.5$ Hz, $J(2,3)=0.8$ Hz, $J(3,4)=7.9$ Hz, $J(4,5)=$ 1.9 Hz, $J(5,Me(6))=6.7$ Hz.

9b: yellowish oil characterised by ${}^{1}H$ NMR (CDCl₃, 300 K): 7.32 (m, 5 H arom.); 5.32 (br. s, NH-C(5)); 5.09, 5.10 (2d, CH₂Ph, J=12.4 Hz); 4.34 (d, H-C(1)); 3.68 (ddd, H-C(2)); 4.24 (dd, H-C(3)); 4.08 (dd, H-C(4)); 4.03 (m, H-C(5)); 3.44, 3.39 (2s, 2 OMe); 2.36 (d, OH-C(2)); 1.52, 1.37 (2s, 2 Me); 1.28 (d, Me(6)). $J(1,2)=6.7$ Hz, $J(2,OH-2)=4.6$ Hz, $J(2,3) = 3.1$ Hz, $J(3,4) = 6.6$ Hz, $J(4,5) = 4.0$ Hz, $J(5, NH-5) =$ 7.1 Hz, $J(5, \text{Me}(6)) = 6.4$ Hz. $R_f = 0.21$ (AcOEt/cyclohexane 1:1).

9c: yellow oil, characterised by ¹H NMR (CDCl₃, 333 K): 7.34 (m, 5 H arom.); 5.13 (s, CH₂Ph); 4.88 (br d, NH-C(5)); 4.51 (d, H-C(1)); 4.99 (dd, H-C(2)); 4.43 (dd, H-C(3)); 4.03 (dd, H-C(4)); 4.14 (ddq, H-C(5)); 3.51, 3.46 (2s, 2 OMe); 2.96 (s, SO2*Me*); 1.52, 1.38 (2s, 2 Me); 1.21 (d, Me(6)). $J(1,2)=4.6$ Hz, $J(2,3)=8.8$ Hz, $J(3,4)=6.6$ Hz, $J(4,5)=$ 2.4 Hz, $J(5, \text{Me}(6))=6.6$ Hz, $J(5, \text{NH-5})=9.3$ Hz. $R_f=0.33$ (AcOEt/cyclohexane 1:1).

11a: yellow oil. $[\alpha]_D^{20} = -93$ ($c=1.0$, CHCl₃). IR (CHCl₃): 2990, 2930, 2830, 1685, 1450, 1410, 1385, 1375, 1350, 1320, 1305, 1240, 1190, 1165, 1140, 1110, 1070, 1025, 870, 695. ¹H NMR: see Table 2. R_f =0.49 (AcOEt/cyclohexane 1:1). Anal. calcd for $C_{19}H_{27}NO_6$ (365.42): C 62.45, H 7.45, N 3.83; found: C 62.4, H 7.4, N 3.9.

2,5-(Benzyloxycarbonylimino)-3,4-*O***-isopropylidene-2, 5,6-trideoxy-D-altrose (benzyl (2***S***)-***r***-2-formyl-***c***-3,***c***-4-isopropylidenedioxy-***t***-5-methyl-pyrrolidine-1-carboxylate, (10b)).** A solution of **10a** (1.03 g, 2.83 mmol) in dry acetone (12 ml) was stirred at 40° C for 1 h with Amberlyst-15 (H^+) (0.28 g, 0.1 g pro mmol acetal). The catalyst was discarded by filtration and washed with acetone, the solvents were evaporated to give crude **10b**.

10b: characterised by ${}^{1}H NMR$ (two rotamers ca. 55:45): see Table 2.

2,5-(Benzyloxycarbonylimino)-3,4-*O***-isopropylidene-2,** 5,6-trideoxy-D-altritol (benzyl $(2R)$ -r-2-hydroxymethyl*c***-3,***c***-4-isopropylidenedioxy-***t***-5-methyl-pyrrolidine-1 carboxylate, (10c)).** To a stirred solution of crude **10b** $(0.274 \text{ g}, 0.79 \text{ mmol})$ in dry MeOH (1.5 ml) under Ar was added NaBH4 (60 mg, 1.58 mmol, 2 equiv.). After 30 min at rt, acetone (2 ml), aq. 1N HCl (0.8 ml, 0.8 mmol, 1 equiv.) and water (10 ml) were successively added and the solution extracted with $Et₂O$ (4 \times 5 ml). Organic solutions were dried (MgSO4) and evaporated. Crude **10c** (0.3 g) was purified by FC $(CH₂Cl₂/Et₂O 9:1$ on 50 g silica gel) to give 10c (170 mg, 67% yield from **10a**).

10c: yellow oil. $[\alpha]_D^{20} = -31$ (*c*=1.0, CHCl₃). IR (CHCl₃): 3400, 2980, 2930, 1675, 1445, 1415, 1375, 1355, 1305, 1265, 1230, 1130, 1100, 1090, 1055, 1000, 855. ¹ H NMR: see Table 2. Anal. calcd for $C_{17}H_{23}NO_5$ (321.37): C 63.53, H 7.21, N 4.36; found: C 63.6, H 7.3, N 4.3.

2,5-(Benzyloxycarbonylimino)-3,4-*O***-isopropylidene-2,5,6-trideoxy-**d**-talose (benzyl (2***S***)-***r***-2-formyl-***t***-3,***t***-4 isopropylidenedioxy-***t***-5-methyl-pyrrolidine-1-carboxylate, (11b)) and 2,5-(benzyloxycarbonylimino)-3,4-***O***-isopropyl**idene-2,5,6-trideoxy-D-talitol (benzyl (2*S*)-*r*-2-hydroxy**methyl-***t***-3,***t***-4-isopropylidenedioxy-***t***-5-methyl-pyrrolidine-1-carboxylate, (11c)).** To a stirred solution of **11a** (0.85 g, 2.32 mmol) in acetone (9.5 ml) under Ar at 40° C was added Amberlyst-15 (H^+) (1.22 g) in six times (four additions of 0.23 g at 0, 3, 4.5, 7 h and two additions of 0.15 g at 11 and 15 h). After 17.5 h the conversion was complete and the same treatment as for **10b** gave crude **11b** (0.96 g, quant.) which was reduced with the same procedure as for **10b** in dry MeOH (3.7 ml) with NaBH₄ $(90 \text{ mg}, 2.3 \text{ mmol})$, 1 equiv.) to give after FC $(CH₂Cl₂/Et₂O 9:1)$ **11c** $(0.58 \text{ g},$ 78% from **11a**).

11b: yellow-brownish oil characterised by ${}^{1}H$ NMR: see Table 2. R_f =0.25 (CH₂Cl₂/Et₂O 9:1).

11c: yellow oil. $[\alpha]_D^{21} = -62$ (*c*=1.0, CHCl₃). IR (CHCl₃): 2980, 2940, 1690, 1455, 1415, 1395, 1355, 1310, 1240, 1165, 1140, 1100, 1070, 1030, 870. ¹ H NMR: see Table 2. ¹³C NMR (CDCl₃, 333 K): 168.3 (NCO₂); 136.7, 128.6, 128.2, 128.1 (Ph); 112.0 (CMe₂)); 81.6 (C(3)); 80.1 $(C(4))$; 67.1 (CH_2Ph) ; 64.8 $(C(2))$; 63.0 $(C(1))$; 58.1 (C(5)); 26.2, 25.2 (2 Me); 15.4 (Me(6)). $R_f=0.08$ (CH₂Cl₂/ Et₂O 9:1), $R_f=0.35$ (AcOEt/cyclohexane 7:3). No satisfactory elemental analysis.

2,5-(Benzyloxycarbonylimino)-2,5,6-trideoxy-d**-altritol (benzyl (2***R***)-***c***-3,***c***-4-dihydroxy-***r***-2-hydroxymethyl-***t***-5 methyl-pyrrolidine-1-carboxylate, (12a)) and 2,5-imino-2,5,6-trideoxy-**d**-altritol ((2***R***,3***S***,4***R***,5***R***)-2-hydroxymethyl-5-methyl-pyrrolidine-3,4-diol, (12b)).** A solution of **10c** (0.327 g, 1.02 mmol) in EtOH (2 ml) was stirred with Amberlyst-15 (H^+) (40 mg, 40 mg pro mmol acetonide) at

 80° C for 7 h. The catalyst was discarded and washed with MeOH, the solvents were evaporated to give **12a** (0.29 g, quant.).

A solution of **12a** (0.29 g, 1.02 mmol) in EtOH (2 ml) was hydrogenolysed over 5% Pd/C (21 mg) at 40° C for 1 h. The catalyst was discarded by centrifugation and washed with EtOH, the solvents were evaporated to give **12b** (0.12 g, 80% from **10c** after recrystallisation in MeOH/ Et_2O).

12a: yellow oil, characterised by ¹H NMR (CDCl₃, 298 K, two rotamers in 70:30 proportions): see Table 2 for the major rotamer, 7.35 (m, 5 H arom.); 5.05–5.21 (m, CH₂Ph); 4.51 (dd, J=4.8, 8.7 Hz, H-C(3)); 4.26 (dd, J= 3.4, 11.4 Hz, Ha-C(1) maj.); 3.95, 3.79 (2m, Ha-C(1) min., Hb-C(1), H-C(2), H-C(4), H-C(5); 1.24, 1.16 (2d, J=6.7 Hz, Me(6) min. and maj.). $R_f=0.43$ (AcOEt/EtOH 9:1).

12b: colourless crystals, $mp=118-120^{\circ}C$ (MeOH/Et₂O). $[\alpha]_D^{20}$ = +36 (*c*=0.83, MeOH). IR (KBr): 3390, 3260, 2910, 1440, 1370, 1320, 1105, 1080, 1040, 1020, 950, 880, 810, 765, 685. ¹H NMR: see Table 2. ¹³C NMR (D₂O, 300 K): 65.3 (C(1)); 63.5 (C(2)); 76.6 (C(3)); 83.3 $(C(4))$; 59.6 $(C(5))$; 21.8 $(Me(6))$. Anal. calcd for: $C_6H_{13}NO_3$ (147.17): C 48.96, H 8.90, N 9.52; found: C 48.6, H 8.9, N 9.3.

2,5-(Benzyloxycarbonylimino)-2,5,6-trideoxy-**D-talitol (benzyl (2***R***)-***t***-3,***t***-4-dihydroxy-***r***-2-hydroxymethyl-***t***-5 methyl-pyrrolidine-1-carboxylate, (13a)) and 2,5-imino-2,5,6-trideoxy-**d**-talitol ((2***R***,3***R***,4***S***,5***R***)-2-hydroxymethyl-5-methyl-pyrrolidine-3,4-diol, (13b)).** Same procedure as for **12a** from **11c** (0.317 g, 0.99 mmol) in EtOH (2 ml) with Amberlyst-15 (H⁺) (40 mg) for 4 h at 80^oC to give **13a** (0.257 g, 92%) after FC (AcOEt on 30 g silica gel). Hydrogenolysis of **13a** as for **12a** in EtOH (2 ml) over 5% Pd/C (18 mg) for 1 h at 40° C gave **13b** (0.125 g, 93%) after evaporation of the solvent.

13a: colourless oil, characterised by ¹H NMR: see Table 2. R_f =0.05 (AcOEt/cyclohexane 7:3), R_f =0.34 (AcOEt/EtOH 9:1).

13b: colourless oil. $[\alpha]_D^{19} = +46$ ($c=1.0$, CH₃OH). IR (KBr): 3380, 2900, 1400, 1370, 1335, 1230, 1195, 1155, 1110, 1075, 1060, 1025, 1000, 940, 875, 800. ¹ H NMR: see Table 2. ¹³C NMR (CD₃OD, 300 K): 63.8 (C(1)); 64.3 $(C(2))$; 75.9 $(C(3))$; 75.4 $(C(4))$; 56.4 $(C(5))$; 14.8 $(Me(6))$. Anal. calcd for: $C_6H_{13}NO_3$ (147.17): C 48.96, H 8.90, N 9.52; found: C 48.9, H 8.8, N 9.3.

2,5-(Benzyloxycarbonylimino)-3,4-*O***-isopropylidene-2,5,6-trideoxy-**d**-allose (benzyl (2***R***)-***r***-2-formyl-***t***-3,***t***-4 isopropylidenedioxy-***c***-5-methyl-pyrrolidine-1-carboxylate, (14a)), 2,5-(benzyloxycarbonylimino)-3,4-***O***-isopropylidene-**2,5,6-trideoxy-D-allitol (benzyl (2*S*)-*r*-2-hydroxymethyl*t***-3,***t***-4-isopropylidenedioxy-***c***-5-methyl-pyrrolidine-1 carboxylate, (14b)).** A solution of crude **10b** (0.876 g, 2.75 mmol) in MeOH (10 ml) was stirred with $Na₂CO₃$ (0.29 g, 2.74 mmol, 1 equiv.) at rt under Ar for 1 h to give a solution of **14a** which was reduced at once by adding NaBH₄ (0.207 g, 5.49 mmol, 2 equiv.) and stirring for 15 min. Same treatment as for **10c** (addition of acetone (5 ml), aq. 1N HCl (2.7 ml), water (30 ml) and extraction

with Et_2O (4×10 ml)), gave after FC (AcOEt/cyclohexane 7:3) pure **14b** (0.49 g, 54% from **10a**).

14a can be isolated by evaporation of the isomerisation solution as a yellowish oil, characterised by ${}^{1}H$ NMR $(CDCl_3, 336 K)$: see Table 2. ¹H NMR $(CDCl_3, 300 K,$ two rotamers 50:50): 9.70, 9.63 (2s, CHO(1), two rotamers); 7.35 (m, 5 H arom.); 5.20, 5.15 (2s, CH₂Ph, two rotamers); 4.93 (s, H-C(3)); 4.64, 4.51 (2s, H-C(2), two rotamers); 4.36 (d, *J*5.7 Hz, H-C(4)); 4.32 (m, H-C(5)); 1.43, 1.31 (2 Me); 1.16, 1.12 (2d, $J=7.0$ Hz, Me(6), two rotamers). $R_f=0.29$ $(CH_2Cl_2/Et_2O 9:1).$

14b: yellow oil. $[\alpha]_D^{20} = +13$ (*c*=1.0, CHCl₃). IR (CHCl₃): 3430, 2985, 2940, 1685, 1450, 1410, 1375, 1355, 1325, 1265, 1235, 1155, 1130, 1100, 1060 1020, 865, 690. ¹H NMR: see Table 2. ¹³C NMR (CDCl₃, 333 K): 155.6 (NCO₂); 136.7, 128.5, 128.1, 127.8, (Ph); 112.0 (*CMe₂*); 85.6 (C(4)); 81.9 (C(3)); 67.3 (CH₂Ph); 66.9 (C(2)); 64.2 $(C(())$; 60.5 $(C(5))$; 27.4, 25.4 (2 Me); 19.7 $(Me(6))$. $R_f=0.37$ (AcOEt/cyclohexane 7:3). Anal. calcd for $C_{17}H_{23}NO_5$ (321.37): C 63.53, H 7.21, N 4.36; found: C 63.8, H 7.3, N 4.3.

2,5-(Benzyloxycarbonylimino)-2,5,6-trideoxy-p-allitol **(benzyl (2***S***)-***t***-3,***t***-4-dihydroxy-***r***-2-hydroxymethyl-***c***-5 methyl-pyrrolidine-1-carboxylate, (15a)).** Same procedure as for **12a**, starting from **14b** (0.40 g, 1.25 mmol) in EtOH (4 ml) with Amberlyst 15 (H⁺) (50 mg) at 80^oC for 18 h. Purification by FC (AcOEt/cyclohexane 7:3 on 30 g silica gel) gave pure **15a** (0.313 g, 90%).

15a: yellow oil. $[\alpha]_D^{20} = +9$ ($c=1.0$, CHCl₃). IR (CHCl₃): 3385, 2940, 1670, 1450, 1415, 1355, 1145, 1085, 690. ^IH NMR: see Table 2. ¹³C NMR (CDCl₃, 336 K): 156.7 (NCO₂); 136.4, 128.5, 128.1, 127.8 (Ph); 76.2 (C(4)); 72.7 $(C(3))$; 67.4 (CH_2Ph) ; 65.2 $(C(2))$; 63.7 $(C(1))$; 60.1 $(C(5))$; 18.8 (Me(6)). $R_f=0.07$ (AcOEt/cyclohexane 7:3). Anal. calcd for $C_{14}H_{19}NO_5$ (281.31): C 59.77, H 6.81, N 4.98; found: C 59.8, H 6.5, N 4.8.

2,5-Imino-2,5,6-trideoxy-D-allitol ((2*S*,3*S*,4*R*,5*R*)-2-hydroxy**methyl-5-methyl-pyrrolidine-3,4-diol, (15b)).** Hydrogenolysis of **15a** (0.20 g, 0.71 mmol) as for **12b** in EtOH (2 ml) over 5% Pd/C (14 mg) for 3 h at 40° C gave 15b (0.102 g, 97%).

15b: colourless oil. $[\alpha]_D^{20} = -2$ (*c*=1.0, MeOH). ¹H NMR: see Table 2. ¹³C NMR (D₂O, 300 K): 65.2 (C(1)); 62.1 $(C(2))$; 72.5 $(C(3))$; 77.3 $(C(4))$; 58.2 $(C(5))$; 17.3 $(Me(6))$. Anal. calcd for $C_6H_{13}NO_3$ (147.17): C 48.96, H 8.90, N 9.52; found: C 48.7, H 8.9, N 9.4.

Enzyme inhibitions

Glycosidase activities were determined at 25° C at the optimal pH of each enzyme¹⁹ with the corresponding *p*-nitrophenyl glycopyranoside as substrate against α -Dglucosidase (EC 3.2.1.20) from baker's yeast (9 units per mg of protein, K_m =0.3 mM, pH=6.8), β -D-glucosidase (EC 3.2.1.21) from almonds (20–40 units per mg of protein, K_m =2 mM, pH=5.0), α -D-mannosidase (EC 3.2.1.24) from Jack beans (ca. 20 units per mg of proteins,

 K_m =2 mM, pH=4.5), α -L-fucosidase (EC 3.2.1.51) from bovine kidney $(5-15 \text{ units per mg}, K_m=0.15 \text{ mM})$, $pH=6.0$) and α -D-galactosidase (EC 3.2.1.22) from green coffee beans (10 units per mg, $K_m=0.3$ mM, pH=6.0). Glycosidases and corresponding *p*-nitrophenyl glycopyranosides were obtained from Sigma Chemical Co. The release of *p*-nitrophenol was measured continuously at 400 nm to determine initial velocities.²⁰ All kinetics were started by enzyme addition in a 1 ml assay medium using substrate concentrations around the K_m value of each enzyme. K_i values were determined for the most potent inhibitors using the Dixon graphical method,²¹ IC₅₀ values were determined for weak inhibitions (at a substrate concentration equal to K_m value) and correspond to the inhibitor concentration required for 50% inhibition of the enzyme in our experimental conditions.

Acknowledgements

The support of the *Centre National de la Recherche Scientifique* (UPRES-A 7015) is gratefully acknowledged. We also wish to thank the *Ministe`re de l'Enseignement et de la Recherche* for a Ph.D. grant to Th. Sifferlen.

References

1. Winchester, Br.; Fleet, G. W. J. *Glycobiology* **1992**, *2*, 199– 210. Legler, G. *Adv. Carbohydr. Chem. Biochem.* **1990**, *48*, 319– 384.

2. Provencher, L.; Steensma, D. H.; Wong, Ch.-H. *Bioorg. Med. Chem.* **1994**, *2*, 1179–1188.

3. Behr, J.-B.; Defoin, A.; Mahmood, N.; Streith, J. *Helv. Chim. Acta* **1995**, *78*, 1166–1177.

4. Wang, Y.-F.; Dumas, D. P.; Wong, Ch.-H. *Tetrahedron Lett.* **1993**, *34*, 403–406.

5. Dumas, D. P.; Kajimoto, T.; Liu, K. K.-C.; Wong, Ch.-H.; Berlowitz, D. B.; Danishefsky, S. J. *Bioorg. Med. Chem. Lett.* **1992**, *2*, 33–36.

6. Liu, K. K.-C.; Kajimoto, T.; Cheng, L.; Zhong, Z.; Ichikawa, Y.; Wong, Ch.-H. *J. Org. Chem.* **1991**, *56*, 6280–6289.

7. Wong, Ch.-H.; Dumas, D. P.; Ishikawa, Y.; Koseki, K.; Danishefsky, S. J.; Weston, Br. W.; Lowe, J. B. *J. Am. Chem. Soc.* **1992**, *114*, 7321–7322; Ishikawa, Y.; Lin, Y.-Ch.; Dumas, D. P.; Shen, G.-J.; Garcia-Junceda, E.; Williams, M. A.; Bayer, R.; Ketcham, C.; Walker, L. E.; Paulson, J. C.; Wong, Ch.-H. *J. Am. Chem. Soc.* **1992**, *114*, 9283–9298; Qiao, L.; Murray, Br. W.; Shimazaki, M.; Schultz, J.; Wong, Ch.-H. *J. Am. Chem. Soc.* **1996**, *118*, 7653–7662.

8. Molyneux, R. J.; Pan, Y. T.; Tropea, J. E.; Elbein, A. D.; Lawyer, C. H.; Hughes, D. J.; Fleet, G. W. J. *J. Nat. Prod.* **1993**, *56*, 1356–1364.

9. Defoin, A.; Sarazin, H.; Streith, J. *Tetrahedron* **1997**, *53*, 13769–13782; 13783–13796.

10. Defoin, A.; Sifferlen, Th.; Streith, J.; Dosbaâ, I.; Foglietti, M.-J. *Tetrahedron: Asymmetry* **1997**, *8*, 363–366.

11. Tschamber, Th.; Waespe-Sarcevic, N.; Tamm, Ch. *Helv. Chim. Acta* **1986**, *69*, 621–625; Defoin, A.; Pires, J.; Streith, J. *Helv. Chim. Acta* **1991**, *74*, 1653–1670.

12. Coppola, G. M. *Synthesis* **1984**, 1021–1023.

13. According to the last step of Wong's synthesis, 4 the isomer he synthesised probably had the all-*cis* configuration.

14. Lustig, E.; Benson, W. R.; Duy, N. *J. Org. Chem.* **1967**, *32*, 851–852.

15. Wehner, V.; Jäger, V. Angew. Chem., Int. Ed. Engl. 1990, 29, 1169–1171; Moss, W. O.; Bradbury, R. H.; Hales, N. J.; Gallaguer, T. *J. Chem. Soc., Perkin Trans. 1* **1992**, 1901–1906.

16. The configuration in which the 2,5-*cis* substituents are in *anti* position to the 2,3-isopropylidenedioxyl moiety is thermodynamically the more stable as already observed.³

17. Stevens, J. D.; Fletcher Jr., H. G. *J. Org. Chem.* **1968**, *33*, 1799–1805.

18. Fleet, G. W. J.; Nicholas, S. J.; Smith, P. W.; Evans, S. V.;

Fellows, L. E.; Nash, R. J. *Tetrahedron Lett.* **1985**, *26*, 3127–3130. 19. Lundblad, G.; Bjare, U.; Lybing, S.; Måhlén, A. *Int. J. Biochem.* **1983**, *15*, 835.

20. La, Y.-T. *J. Biol. Chem.* **1967**, *242*, 5474–5480.

21. Segel, I. H. *Enzyme Kinetics*; Wiley: New York, 1975, pp 109–144.